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Feature-Guided Shape-Based Image Interpolation
Tong-Yee Lee* and Chao-Hung Lin

Abstract—A feature-guided image interpolation scheme is pre-
sented. It is an effective and improved, shape-based interpolation
method used for interpolating image slices in medical applications.
The proposed method integrates feature line-segments to guide the
shape-based method for better shape interpolation. An automatic
method for finding these line segments is given. The proposed fea-
ture-guided shape-based method can manage translation, rotation
and scaling situations when the slices have similar shapes. It can
also interpolate intermediate shapes when the successive slices do
not have similar shapes. This method is experimentally evaluated
using artificial and real two-dimensional and three-dimensional
data. The proposed method generated satisfactory interpolated
results in these experiments. We demonstrate the practicality,
effectiveness and reproducibility of the proposed method for
interpolating medical images.

Index Terms—Blending, distance map, interpolation, shape-
based, warping.

I. INTRODUCTION

M EDICAL imaging devices produce medical data in the
form of image slices. In such images, the distance be-

tween consecutive slices is larger than the distance between two
neighboring pixels within a slice. This problem has an adverse
effect on the subsequent visualization and analysis processes
[1]–[4]. Many interpolation techniques have been proposed for
processing such data. Classical image interpolation procedures
fall into two main categories: gray level and shape-based. In the
following, we will overview the work related to the proposed
method.

The simplest method involves linearly interpolating the gray
values in the slices to fill in the gray values in the missing slices
[1]–[4]. However, artifacts are produced when the contour lo-
cations on two given slices shift considerably. To reduce these
artifacts, Keyset al. [6] attempted to use higher order functions
to perform interpolation. Later, a dynamically elastic surface
interpolation scheme was proposed to manage the branching
problem [7]. The key concept in this method involved deter-
mining the force field acting on the contour of one base image
and to deform it gradually, making it closer to the contour on
the other base image. Similarly, a hybrid approach combining
elastic interpolation, the spline theory and the surface consis-
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tency theorem was proposed to produce further improvement
[8].

Grevera and Udupa [5] and Hermanet al. [10] proposed
shape-based methods by encoding the segmented image with
distance codes. This approach interpolates the distance instead
of the gray values and, therefore, maintains better geometric
changes. Because the shape-based method can be implemented
efficiently and achieves reasonable interpolation results, it
has become a widely used method. However, it cannot deal
effectively with objects with holes, large offsets, or heavy
invagination. To overcome these drawbacks, Guoet al. [11]
developed a morphology-based interpolation method. This
method first overlaps the two slices to obtain a morphologically
difference image and then applies a sequence of dilation
and erosion operations on nonoverlapping regions to achieve
interpolation. This method successfully resolves the problems
in objects with holes and large offsets. However, it still cannot
handle objects with heavy invagination [12]. Recently, Lee
et al. [13] proposed another morphology-based scheme. In
contrast to [11], this approach is simpler in computational
complexity and can handle more cases such as branching and
invagination.

Several modified shape-based methods that utilize knowl-
edge extracted from images have been developed. For example,
Goshtasbyet al. [14] selected feature points from successive
frames to control the gray-level interpolation. Feature points are
selected using the gradient value as a criterion. Feature points
were used in [15], [16] defined using a fuzzy measure of bound-
aries and medial axis transforms. In [17] morphological skeleton
interpolation was proposed based on object representation using
mathematical morphological skeletonization.

In this paper, we propose a feature-guided shape-based image
interpolation scheme. We borrowed the image-warping concept
from T. Beieret al. [18] to compute interpolation with feature
line-segment control. We extended this basic idea in two di-
rections. First, the proposed scheme can automatically compute
feature line-segments to control shape-based methods. Second,
the original warping method in [18] is very computationally ex-
pensive. We propose methods to speed up the warping computa-
tion. In computer graphics, Cohenet al. [19] proposed three-di-
mensional (3-D) warping to interpolate 3-D volumetric objects.
There are two main drawbacks that prevent this method from
being directly used to interpolate medical images. First, this al-
gorithm is very computationally expensive. Second, the success
of this method is highly dependent on manual feature specifica-
tion. It is impractical to accurately specify corresponding fea-
tures in a real 3-D medical image that often contains hundreds
of slices. This is very tedious and labor intensive work. In ad-
dition, questions about the reproducibility and accuracy of the
method arise if different people specified the features.
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Fig. 1. Flowchart of the feature-guided shape-based interpolation algorithm.

The paper is organized as follows. The feature-guided
shape-based interpolation method is presented in Section II.
In Section III, the method for automatically finding feature
line-segments is presented. Experimental results when the
proposed method is applied to artificial and real-world data are
given in Section IV. Conclusions are drawn in Section V.

II. FEATURE-GUIDED SHAPE-BASED IMAGE INTERPOLATION

The proposed method is shown in Fig. 1. This method can be
divided into the following steps. For any given two consecutive
slices (binary or gray images), segment them (i.e., if gray im-
ages) and extract the contours for the objects of interest as in
most of the shape-based interpolation techniques. Our previous
techniques in [13] are exploited to compute the object matching
and create positive and negative object pairs. These tasks will
be briefly explained as we discuss branching and hole situa-
tions in Section IV. For each object pair (positive or negative),
the standard shape-based method [9], [10] is used to generate
the corresponding distance maps. The feature line-segments are
found automatically and warping is used to interpolate the in-
termediate distance maps. The work presented in this section is
the core of the proposed method. Next, the threshold is set to
zero for values stored on the interpolated distance maps to ob-
tain the interpolated contours. In case we need to create multiple
contours, such as branching or holes, some of the above proce-
dures must be processed several times (see the dashed line in
Fig. 1). Finally a contour-blending task is required to combine
all interpolated contours together to obtain the correct results. In
these above procedures, some well-known shape-based methods
[9], [10] and techniques were used from our previous work [13]
will not be explained here in detail. We will concentrate on the
fourth part of the above procedures. In the following subsec-
tions, we will present the details on 1) how warping [15] using
corresponding line segments to control the interpolation and
2) speeding up warping computation in the proposed method
and 3) how to automatically compute the control line segments.

A. Shape-Based Interpolation Using Warping

In Fig. 1, for given an object contour pair ( ) (i.e.,
after contour extraction) two distance maps ( ) are
computed using the standard shape-based method. After the
corresponding feature line-segments are computed (will be
described later) for ( ), a warping technique [18] is
used to fill in the distance information for the intermediate

distance map . To create , the warping is divided into
two main steps. First, we compute two deformed distance
maps ( ) from ( ) according to the control
line-segments. The two deformed ( ) maps are then
linearly blended to generate . Each control line segment
is directed. For each corresponding pair of line segments

and on ( ), the warping computes
an intermediate line segment , where ,

and .
The deformed can be then computed as follows [18]. For
each pixel coordinate of and its corresponding image
pixel on , the warping computes using

(1)

(2)

(3)

where the value is the position along the line normalized by the
distance and is the distance from the line and procedure

returning a vector that is perpendicular to the
input vector. The idea is very simple in the above equations.
Both directed lines and define their local coordi-
nate systems. For the correspondingand , their local co-
ordinates are ( ) in these two local systems defined by
and . In [18], the warping method uses multiple line seg-
ments. Assume that we have computed due to
corresponding line segments. We calculate the combined point

for as follows:

and (4)

where the distance is the distance from pointto each line seg-
ment on . The parameter ( in all experiments) is a
small number to avoid being a zero value and the parameter

(i.e., in all experiments) is used to control the rate of
degradation influence per each line segment. In this manner, the
warping function calculates for . We then let the distance
value for on be the distance for on . Using proce-
dures similar to those above we can also compute the deformed

. Now, we have computed two deformed ( ) maps
for the intermediate . Next, both and are blended
in a linear manner to calculate using

(5)

where and is a pixel coordinate. We call the above
procedures a feature-guided shape-based interpolation method
in this paper.

B. Optimization

The warping technique [18] is a brute-force approach. It
computes every pixel to a new location according to all feature
line pairs. In this section, we will propose methods to speed
up the warping computation. We suggest warping computation
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speed improvements using the linearity property of each
warping scan-line and the bounding boxes.

1) Scan-Line Linearity of Warping Function:Using (1)–(3)
to transform a scan-line, we can obtain a transformed line that
is rotated, scaled or translated. In the following, we will show
that this transformation is a linear function. Assume that pixels

and are two ending points of a scan-line andis a point
on . For a feature line pair, the locations of, and will
be mapped onto new coordinates and . Since , and

are located on the same scan-line, we have

and (6)

For the pixel on either or , we use (1)–(3) to find
’s corresponding location on either or by (7),

as shown at the bottom of the page, wherecan be either
or and can be either or and and are

and in (1). Therefore, (7) indicates the transformation of
a given scan-line is a linear function. On this basis, we morph
two ending points for each scan-line using only (1)–(3) and lin-
early interpolate the remaining points rather than compute the
remaining points using (1)–(3). The warping computation can,
thus, be reduced. With this optimization, we approximate the in-
fluence of a line pair, say on a given scan-line, and term each
transformed line . We then use (4) to combine alls and ac-
complish warping this scan-line. This combination using (4) is
not a linear function and, thus, a straight line could be distorted
into a curve.

2) Bounding Box:The computation cost for the original
warping technique is in proportion to the number of feature
lines and image resolution. We can reduce the computation cost
by skipping some empty pixels in our application. For each con-
tour pair ( ), we find the union of their bounding boxes
and need only to perform the same interpolation procedures
described in Section II-A to this union area, as shown in Fig. 2.
Only a distance transform is performed on this area. Later in
Section IV, we will show how this bounding box technique

Fig. 2. B1 and B2 are bounding boxes for a given contour pair (C ; C ).
Both the distance transform and interpolation are performed only on the union
area instead of the whole image to save computation cost.

combined with scan-line optimization (in Section II-B1) will
significantly improve the warping computation.

III. A UTOMATICALLY COMPUTING CONTROL LINE SEGMENTS

In the following, we will propose an approach to compute cor-
responding line segments for a given contour pair ( ).
This approach consists of three main tasks: 1) finding the prin-
ciple axis of each contour, 2) simplifying the input contours and
3) contour matching. These three tasks will be presented in the
following sections.

A. Principle Axis Alignment

Given two input contours, we need to align their principle
axes before we find their corresponding line segments. A two-
dimensional (2-D) contour consists of points and any two
consecutive points and of these points can form a line
segment. The coordinate of is denoted as . The
principle axis of a contour can be computed from its, co-
variance matrix [20], where is defined by (8), as shown at the
bottom of the page. In (8), represents the average
of points. We then compute the maximum eigenvalueof
[20]. The corresponding eigenvector ofdefines the principle
axis of the contour . We compute the principle axes for the two

(7)

(8)
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(a) (b) (c) (d)

Fig. 3. Contour simplification. (a) Input contour consists of 999 points. (b)–(d)
Simplified contours of (a) consisting of 250, 60, and 12 points, respectively.

input contours ( and ) and their axes are denotedand
, respectively. The included anglebetween and

is then determined. Using this included angle, we then rotate
each of to achieve alignment using

(9)

where is the rotation matrix.

B. Contour Simplification

In our approach, line segments are used to control the shape-
based interpolation. Ideally, we will not use too many line seg-
ments and these line segments should be feature line segments of
the given contours. For this purpose, we implemented a method
for the optimal polygonal approximation of digitized curves
[21]. This method uses Aheuristic search algorithm to speed
up finding the optimal solution. For a given-point contour, its
complexity is close to . In [21], the error functionerror

is used to estimate the local approximation and is equal
to the square Euclidean distance from contour each point from

to to its orthogonal projection onto the line
defined by and using

error (10)

where is a point from to . Fig. 3 shows an
example using this method (for more details, see [21]. After
simplification, only the feature points of a given contour are left.
In the next subsection, we will describe a matching method to
determine the correspondence among these feature points.

C. Contour Matching

Let , and , and be two
parametric curves for the source and input contours. In this
section, we need to establish the correspondence between the
two curves. To establish correspondence, two matching criteria
are considered: intensity and geometry similarities. We use the
image correlation to evaluate the intensity similarity. Assume
that two contours are originally extracted from two given gray-
level (or binary level for artificial data) image slicesand .
For two contour points and on and , their image
correlation can be computed using

(11)

where and are the variances in intensity value for two
blocks centered on and , respectively. and

are computed using

for or (12)

And is covariance of and , and can be computed
using

(13)

For a continuous parametric curve , we can compute its
unit tangent vector using the following:

(14)

In this paper, the geometric similarity of and
is evaluated using the inner product of and

. This inner product is denoted using

(15)

The basic idea is that when two curves are matched, each
correspondence pair has an equal tangent vector
(i.e., inner product is equal to 1). Therefore, when we find
all of the equal tangent vectors between two curves, the best
match occurs when the sum of (15) for all correspondences
is the maximum. After the contour simplification discussed
in Section III-B, let us assume that both and
consists of points and each point is denoted as and

, where . To find the best matched
points between and , we optimally compute the
solution using the following:

(16)

To evaluate (16), we need to reparameterize [22]

using to find solutions. and are the weights
for the intensity and geometry similarities. In addition, the repa-
rameterization must be subject to , and

. Directly solving (16) is a hard problem. We
adopted Cohenet al. [23] approach by exploiting dynamic pro-
gramming over the points of and . This dy-
namic programming approach recursively defines a cost func-
tion using

(17)
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(a) (b) (c)

Fig. 4. Contour matching. (a) and (b) Input contours onI and I ,
respectively. Each corresponding point pair is shown using a line connecting
two corresponding points on two contours in (c).

Fig. 5. Warping procedures to interpolate contours.

The meaning of is interpreted as the optimal cost for
matching the first samples of with the first samples
of . The time complexity of is using
the dynamic programming approach [23]. Fig. 4 shows an ex-
ample of matching two curves using the proposed method. In
this example, each corresponding point pair is shown using a
line connecting two corresponding points. After the matching
task, these matched points will define corresponding points be-
tween the two contours and two consecutive feature-points from
a feature line-segment on each contour. In all examples in this
paper, when computing (17), we let and for
the real data and and for the artificial data.

D. Solving Interpolation Problems

We show an example in Fig. 5 using the proposed algorithm
to control shape-based interpolation. In this example, we need
to create distance maps [Fig. 5(a)] and [Fig. 5(b)]
for two input contours and on image slices and

. We used feature line-segments computed from the algo-
rithms presented in Section III-C to generate two warping dis-
tance maps [Fig. 5(c)] and [Fig. 5(d)]. Next, we used
(5) to linearly interpolate any number of intermediate distance
maps. This simple approach performs well as the orientation for
the principle axes of and are not too different. This ap-
proach would not otherwise be able to generate a smooth inter-
polation (see an example in Fig. 6). To avoid this situation, we
replaced (5) with

(18)

where , , are defined in (5), and
are defined in (9). Fig. 5(e) shows an interpolated map

using (18). We used an example in Fig. 6 to demonstrate the
difference using (5) and (18). In (5), and are shown in
(a) and (b). The matched points between the two contours are
illustrated in Fig. 5(c). Fig. 5(d) and (e) represents the rendered
results of the interpolated volume using (5) and (18). From this
example, we can observe that Fig. 5(e) has a smoother interpo-
lated volume than Fig. 5(d).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Experiments were performed using artificial and real-world
data. The artificially generated data were selected from pre-
vious work or selected to present the features of the proposed
algorithm.1 In the following examples, all corresponding point
pairs are shown using lines connecting the corresponding points
among the contours. The first example was presented in Sec-
tion III-D as shown in Fig. 6. This example demonstrates the ca-
pability of the proposed method to interpolate slices of a rotating
stick-like object. Fig. 7 shows that the shape of the stick-like
object is preserved and the object in the first original frame is
rotated to the orientation of the second original frame. The al-
gorithm was next applied on slices that contain two circles [11],
[12], [17] in Fig. 8. In this example, the shape of the large circle
on the first original frame is preserved and the circle is translated
and shrunk in size toward the small circle in the second orig-
inal frame. This experiment shows the ability of this algorithm
to interpolate slices contained in objects with large offsets and
that differ in size. From these two examples, the proposed fea-
ture-guided shape-based method can manage translation, rota-
tion and scaling situations, when the slices have similar shapes.

The next two examples were hole and branching problems
shown in Figs. 9 and 10. In Fig. 9, the original frames are (a)
and (b). Both (a) and (b) have a hole. This example demonstrates
the capability of the proposed method to interpolate object slices
with holes. In this example two contour pairs are created: a pos-
itive pair for the outer contours and a negative pair for the inner
hole-contours. We then used the proposed method to generate
two interpolated contours: one for a positive pair and one for a
negative pair. The two contours were then blended to generate
a desired contour. To deal with a hole, the blending is simply
a set subtraction operation [13]. For multiple negative and pos-
itive pairs, we separately interpolate the positive and negative
object pairs. Afterwards, we blend all of the same type interpo-
lated contours (positive or negative). In this case, the blending is
simply a set union operation. We then subtract the union of neg-
ative contours from the union of positive contours to produce the
final interpolated contour. More details about this blending can
be found in our previous work [13]. Fig. 10 demonstrates the
capability of the proposed method to interpolate object slices
with branches [7], [8], [11]–[13]. In [13], we scored each po-
tential matched object pair based on the overlapping informa-
tion and distance between them. If the score was over a se-
lected threshold, the potential pair was considered a matched
pair. We generated interpolated contours for all matched pairs.

1More experiments can be found at our research web site: http://couger.csie.
ncku.edu.tw/~vr/TMI_interpolation.html.
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(a) (b) (c) (d) (e)

Fig. 6. Difference using (5) and (18) is shown. (a) and (b) Original contoursC andC , respectively. (c) Matched points between the two contours. (d) and
(e) Interpolated volume rendering results using (5) and (18), respectively.

(a) (b) (c) (d) (e)

Fig. 7. Interpolated slices for the example in Fig. 6.

Fig. 8. Objects with large offsets [11], [12], [17]. (a) and (b) Two input contours. (c) Matched points. (d) Interpolated volume rendering results. (e) Sequence of
interpolated slices.

Fig. 9. Objects with a hole [11]. (a) and (b) Original frames. (c).(left) positive pair and (right) negative pair. (d) Rendered result of interpolatedvolume and
(e) shows a sequence of interpolated object.

Fig. 10 shows the independent interpolation of three positive
object pairs. The final contour can then be reconstructed from
the union of these three interpolated contours. This example was
widely tested in [7], [8], [11]–[13]. The proposed scheme yields
very satisfactory results.

Figs. 11 and 12 are termed “moderate” and “extreme” con-
cave cases in [7]. The proposed method has the capability to
deal well with these two cases. Both examples were also tested
in [7]. To deal with these examples, this approach [7] employs

a very computationally intensive method to distort one contour
to be like another one. Using the simpler proposed scheme, we
see the shapes of the intermediate contour change smoothly re-
gardless of being a “moderate” or “extreme” concave case. Our
results are similar to those presented in [7].

The last two artificial examples were evaluated in [12] as
shown in Figs. 13 and 14. Sunet al. [12] mentioned that both
cases were difficult and were not solved well using the morpho-
logical-based interpolation method [11]. Many previous studies
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Fig. 10. Branching case [7], [8], [11]–[13]. (a) and (b) Original slices. (c) Matched object pairs. (d) Rendered result of interpolated volume. (e) Sequence of
interpolation.

Fig. 11. A “moderate” concave case [7]. (a) and (b) Original slices. (c) Correspondence. (d) Rendered result of interpolated volume. (e) Sequence of interpolation.

Fig. 12. An “extreme” concave case [7]. (a) and (b) Original slices. (c) Correspondence. (d) Interpolated volume rendering result. (e) Interpolation sequence.

suggested applying object centralization to have one object
enclosed by another before interpolation [17]–[19]. Sunet al.
pointed out that this conventional centralization (i.e., aligning
the centroids of the two objects) sometimes failed when the
objects were concave. To solve this issue, Sunet al. [12] iter-
atively employed object centralization and object enlargement
to ensure that object enclosure could occur. After interpolation,
this approach requires contour shrinking using erosion to
compensate for the object enlargement effect. Furthermore, this
process cannot always guarantee object enclosure even when
the enlarging factor becomes extremely large [12]. This entire
process is not very efficient with respect to the computational

complexity. Our proposed scheme is more practical than this
approach. Four examples using the proposed method applied to
real-world medical data follows in Figs. 15–18.

All of the above experiments were run on the 1-GHz Intel
Pentium III with 128-MB memory. All original slices were
256 256 images. We interpolated 100 slices for Figs. 7–14.
For Figs. 15–17, we interpolated eight slices. Table I shows
the timing information used in the proposed method and the
number of feature line segments for interpolating eight slices
in Figs. 15–17. The information includes the time used in
image preprocessing (i.e., contour extraction, object matching,
bounding boxes, computing the principle axes and distance
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Fig. 13. A difficult case tested in [12]. (a) and (b) Original slices. (c) Correspondence. (d) Interpolated volume rendering results. (e) Sequence ofinterpolation.

Fig. 14. The invagination case (abrupt change in shape) [12]. (a) and (b) Original slices. (c) Correspondence. (d) Interpolated volume rendering results.
(e) Sequence of interpolation.

Fig. 15. Colon CT image slices. (a) and (b) Original slices and colon contours are extracted in (c) and (d). (e) Correspondence. (f) Sequence of interpolation.

transform etc.), contour simplification, contour matching and
interpolation with warping. From this table, we can see that
most of the components of the proposed algorithm compute
very fast. Only the interpolation component is not fast. The
average time per interpolated slice was 4.16 s, achieved using
the nonoptimized proposed method for all experiments in this
paper. Tables II and III show the improvement in warping
computation using the scan-line linearity and bounding boxes.
From these two tables, we clearly see the improvement using
the proposed optimized schemes. The average time per interpo-
lated slice is reduced from about 4.16 s to 2.99 (using scan-line

linearity) and 1.097 s (using scan-line linearity with bounding
boxes). From these tables, we see that the interpolation cost is
in proportion to the number of line segments. The empty area is
also an important factor. As we discussed in Section II-B2, we
can save computation time, if we skip pixels outside the union
of the bounding boxes. The more pixels we skip, the greater the
potential improvement achieved.

Finally, we applied the proposed method to real 3-D molar
data. The original slices of the molar volume were scanned
from [17]. Fig. 18(a) shows 16 slices from the original 30
slices. Fig. 18(b) shows two views of the reconstructed results.
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Fig. 16. CT pelvis image slices: (a) and (b) are original slices; (c) and (d) are extracted contours with interest; (e) shows correspondence between (c) and (d).
(f) Interpolation sequence.

Fig. 17. MRI image slices. (a) and (b) Original slices. (c) and (d) Extracted contours with interest. (e) Correspondence between (c) and (d). (f) Interpolation
sequence.

Fig. 18. Molar volume reconstruction (256� 256� 240). Original input images were scanned from [17].

Table IV shows the experimental timing information for
reconstructing Fig. 18. Since we have 30 original slices, we
need to perform image preprocessing, contour simplification
and matching 30 times. A total of 240 slices were interpolated.
We also reconstructed other 3-D data.2

2Available: http://couger.csie.ncku.edu.tw/~vr/TMI_interpolation.html

V. CONCLUSION

We proposed using features to control shape-based inter-
polation. The proposed scheme was experimentally shown
to successfully resolve complex interpolation problems that
could not be managed using the original shape-based method
or other previous approaches. We applied the proposed scheme
to real-world data. All of the experimental results showed that
the proposed method could generate satisfactory interpolation.
If feature-lines are specified manually, there is no guarantee of
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TABLE IV
EXPERIMENTAL TIMINGS (UNIT: SECONDS) FOR FIG. 18

TABLE I
TIME (UNIT: SECONDS) ANALYSIS FOR EXPERIMENTS IN FIGS. 15–17.
FOR FIG. 17, 12–16 MEANS THAT THERE ARE TWO CONTOUR PAIRS

AND ONE PAIR USED 12 LINE SEGMENTS AND THE OTHER USED

16 LINE SEGMENTS TOCONTROL INTERPOLATION

TABLE II
PERFORMANCECOMPARISON(UNIT: SECONDS) AMONG THE NON-OPTIMIZED,
OPTIMIZED BY SCAN-LINE LINEARITY AND OPTIMIZED USING A COMBINATION

OF SCAN-LINE LINEARITY AND BOUNDING BOXES. IN THESEEXAMPLES:
FIGS. 15–18, WE INTERPOLATEDEIGHT SLICES

TABLE III
PERFORMANCECOMPARISON(UNIT: SECONDS) AMONG THE NON-OPTIMIZED,

OPTIMIZED USING SCAN-LINE LINEARITY AND OPTIMIZED USING A

COMBINATION OF SCAN-LINE LINEARITY AND BOUNDING BOXES.
IN THESEEXAMPLES (FIGS. 7–14), WE INTERPOLATED100 SLICES

reproducibility in daily practice because different persons can
specify different features. The proposed method automatically
finds the feature line-segments. This method can be used easily
in practice experiments and there is no reproducibility problem.
We also proposed techniques to optimize the warping speed.
On average, the achieved speedup varies from 1.39 to 3.79

times. The proposed method has demonstrated practicality,
effectiveness, reproducibility and accuracy in medical image
interpolation. Finally, we should also mention that the prior
techniques for shape-based interpolation are effective in the
large majority of circumstances in our experience. Further-
more, it is very difficult to state rigorously that our method
produces theoretically correct interpolated shape information,
since the input data are subsampled. However, in contrast to
other work, the proposed method generally and successfully
interpolates data that were reported in other previous work.
On the other hand, with improving imaging scanners, the
interpolation problem is becoming less necessary for 2-D/3-D
data. However, it will be another research direction to apply the
proposed method to four-dimensional (4-D) (plus time) data.
It is not common to have a very high resolution of 4-D data at
most hospitals.
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