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Feature-Guided Shape-Based Image Interpolation

Tong-Yee Lee* and Chao-Hung Lin

Abstract—A feature-guided image interpolation scheme is pre- tency theorem was proposed to produce further improvement
sented. It is an effective and improved, shape-based interpolation [8].

method used for interpolating image slices in medical applications.
The proposed method integrates feature line-segments to guide the Grevera and Udupa [5] and Herma al. [10] proposed

shape-based method for better shape interpolation. An automatic Shape-based methods by encoding the segmented image with
method for finding these line segments is given. The proposed fea-distance codes. This approach interpolates the distance instead
ture-guided shape-based method can manage translation, rotation of the gray values and, therefore, maintains better geometric
and scaling situations when the slices have similar shapes. It can changes. Because the shape-based method can be implemented

also interpolate intermediate shapes when the successive slices d%ﬁiciently and achieves reasonable interpolation results, it
not have similar shapes. This method is experimentally evaluated '

using artificial and real two-dimensional and three-dimensional Nas become a widely used method. However, it cannot deal

data. The proposed method generated satisfactory interpolated €ffectively with objects with holes, large offsets, or heavy

results in these experiments. We demonstrate the practicality, invagination. To overcome these drawbacks, @tal. [11]

effectiveness and reproducibility of the proposed method for developed a morphology-based interpolation method. This
interpolating medical images. method first overlaps the two slices to obtain a morphologically
Index Terms—Blending, distance map, interpolation, shape- difference image and then applies a sequence of dilation
based, warping. and erosion operations on nonoverlapping regions to achieve
interpolation. This method successfully resolves the problems

|. INTRODUCTION in objects with holes and large offsets. However, it still cannot

. . , . . handle objects with heavy invagination [12]. Recently, Lee
M EDICAL.|mag|ng' devices prod'uce medical ‘?'ata in th‘ét al. [13] proposed another morphology-based scheme. In
form of image slices. In such images, the distance b8c'mtrast to [11], this approach is simpler in computational

tween consecutive slices is larger than the distance between %?nplexity and can handle more cases such as branching and
neighboring pixels within a slice. This problem has an adver agination

effect on the subsequent visualization and analysis Processes .\ oral modified shape-based methods that utilize knowl-

[11-[4]. Many interpolation techniques have been proposed fgﬁge extracted from images have been developed. For example,

Farlcl) ?netts)stlvr\]/g fnuefiz g;tt:. ;Ii:?'cg 'li%?;gheg%c:ag?ﬁagre??g Oshtasbyet al. [14] selected feature points from successive
following, we will ove?view ﬂ?e xork related topthe prop(.)se mes to cqntrol the gray-level interpolatign. Feature points are
method ' elected using the gradle_nt valu_e as a criterion. Feature points
" . . . . were used in [15], [16] defined using a fuzzy measure of bound-

The simplest method involves linearly interpolating the gr ries and medial axis transforms. In [17] morphological skeleton

values in the slices tq fillin the gray values in the missing SIICG’fﬁterpolation was proposed based on object representation using
[1]-[4]. However, artifacts are produced when the contour I?ﬁathematical morphological skeletonization,

cations on two given slices shift considerably. To reduce thes . . .
. . . n this paper, we propose a feature-guided shape-based image
artifacts, Keyst al. [6] attempted to use higher order functions . . .
interpolation scheme. We borrowed the image-warping concept

to perform interpolation. Later, a dynamically elastic surfacf?om T. Beieret al. [18] to compute interpolation with feature

interpolation scheme was proposed to manage the branchin . L . .
problem [7]. The key concept in this method involved detgr'-n% segment control. We extended this basic idea in two di

mining the force field acting on the contour of one base ima rections. First, the proposed scheme can automatically compute

e .
and to deform it gradually, making it closer to the contour O?eature line-segments to control shape-based methods. Second,

the other base image. Similarly, a hybrid approach combin'{he original warping method in [18] is very computationally ex-

ing .
. . . nsive. We propose methods to speed up the warping computa-
elastic interpolation, the spline theory and the surface con S N computer graphics, Cohenal. [19] proposed three-di-

mensional (3-D) warping to interpolate 3-D volumetric objects.
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For each object Compute line distance mapD;. To createD,, the warping is divided into
‘: pair (negative or ] :zgc':z'gsegf*":::" two main steps. First, we compute two deformed distance
positive) vect P maps Q., D; ;) from (Ds, D,4;) according to the control
Contour | || [Trregraidon . v I@ne—segments. The two deformedy, D’ ;) maps are then
extraction | || | zero distance Er‘::‘;;ﬁﬁm linearly blended to generat®,. Each control line segment
‘ is directed. For each corresponding pair of line segments
v v . P.Qs and Ps1Qs+1 on (Ds, Dsyq), the warping computes
M%ﬁiif:‘g )| Obiect blending ?,ﬁl“,;f,fuﬁon an intermediate line segmed,Q;, where0 < t < 1,
Guided by line Py=Pox(1—t)+txPsrpandQ; = Qs+ (1 —t) +t % Q1.
segments The deformedD’, can be then computed as follows [18]. For

each pixel coordinat&X of D’ and its corresponding image

_ _ , _ _pixel X’ on Dy, the warping computeX’ using
Fig. 1. Flowchart of the feature-guided shape-based interpolation algorithm.
(X —F)e(Q:— D)

. . . U= B 1)
The paper is organized as follows. The feature-guided 1Q: — Bl
shape-based interpolation method is presented in Section Il. (X — P;) e Perpendicular(Q; — P;)
In Section I, the method for automatically finding feature ¢ = Qi — (2)

line-segments is presented. Experimental results when the ]
proposed method is applied to artificial and real-world data arey’ — p, 4 y ¢ (Q, — P,) + *~ Perpendicular(Q, — F)
given in Section IV. Conclusions are drawn in Section V. 1Qs — Pl

3)
Il. FEATURE-GUIDED SHAPE-BASED IMAGE INTERPOLATION  \yhere the value is the position along the line normalized by the

The proposed method is shown in Fig. 1. This method can 8istancel’,Q; andv is the distance from the line and procedure
divided into the following steps. For any given two consecutivéerpendicular( ) returning a vector that is perpendicular to the
slices (binary or gray images), segment them (i.e., if gray ifflput vector. The idea is very simple in the above equations.
ages) and extract the contours for the objects of interest ad3pth directed lines”, @), and P;Q, define their local coordi-
most of the shape-based interpolation techniques. Our previf\@é€ systems. For the correspondikigand X", their local co-
techniques in [13] are exploited to compute the object matchifédinates arey; v) in these two local systems defined ByQ;
and create positive and negative object pairs. These tasks @A Ls Q. In [18], the warping method uses multiple line seg-
be briefly explained as we discuss branching and hole sitdBeNts. Assume that we have compufed X3 - - - X, due ton
tions in Section IV. For each object pair (positive or negative§orresponding line segments. We calculate the combined point
the standard shape-based method [9], [10] is used to generiteor X as follows:
the correspondjng distance mgps._The featur'e Iine—segmentg are i wi * X!
found a}utom_atlcally and warping is used to mte_rpolgte the_ in- s _ i=1 and w; = (a + distance)™  (4)
termediate distance maps. The work presented in this section is i w
the core of the proposed method. Next, the threshold is set to =

zero for values stored on the interpolated distance maps to @rere the distance is the distance from pdinto each line seg-

tain the interpolated contours. In case we need to create multigignt onD’.. The parameter (¢ = 0.01 in all experiments) is a
contours, such as branching or holes, some of the above prog@all number to avoia; being a zero value and the parameter
dures must be processed several times (see the dashed ling(ire. ;, = 2 in all experiments) is used to control the rate of
Fig. 1). Finally a contour-blending task is required to combingegradation influence per each line segment. In this manner, the
allinterpolated contours together to obtain the correct results.\{arping function calculateX” for X. We then let the distance
these above procedures, some well-known shape-based methadse for X on D', be the distance fok’ on D,. Using proce-

[9], [10] and techniques were used from our previous work [13res similar to those above we can also compute the deformed
will not be eXplaIned here in detail. We will concentrate on th@;+1 NOW, we have Computed two deforrnda:(7 D/+1) maps

S

fourth part of the above procedures. In the following subsegy the intermediateD,. Next, bothD’, and D', are blended
tions, we will present the details on 1) how warping [15] using, 3 linear manner to calculat@, using

corresponding line segments to control the interpolation and o ,
2) speeding up warping computation in the proposed method Di(X) = Dy(X) * (1 = t) + Doy %t ®)
and 3) how to automatically compute the control line segmentghere0 < ¢ < 1 and.X is a pixel coordinate. We call the above

procedures a feature-guided shape-based interpolation method
A. Shape-Based Interpolation Using Warping in this paper.

In Fig. 1, for given an object contour pai€{, Cs,1) (i.e.,
after contour extraction) two distance map3,( Ds41) are
computed using the standard shape-based method. After th&he warping technique [18] is a brute-force approach. It
corresponding feature line-segments are computed (will bemputes every pixel to a new location according to all feature
described later) fors, Cs41), @ warping technique [18] is line pairs. In this section, we will propose methods to speed
used to fill in the distance information for the intermediatep the warping computation. We suggest warping computation

B. Optimization
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speed improvements using the linearity property of each Uno area
warping scan-line and the bounding boxes. g@r
1) Scan-Line Linearity of Warping FunctiorlJsing (1)—(3)

to transform a scan-line, we can obtain a transformed line that / \ l B, :
is rotated, scaled or translated. In the following, we will show " .
that this transformation is a linear function. Assume that pixels \

p B, / / ;

A andB are two ending points of a scan-line afids a point
on AB. For a feature line pair, the locations.4f B andC will

be mapped onto new coordinatés B’andC’. SinceA, B and FemmmnEEEn
C are located on the same scan-line, we have

/
\

Fig. 2. B1 and B2 are bounding boxes for a given contour gair, (Cs+1).
Both the distance transform and interpolation are performed only on the union
C=(1-s)xA+sxB and se€(l,0). (6)  areainstead of the whole image to save computation cost.

For the pixelC on eitherD/, or D, ,, we use (1)—(3) to find

C’s corresponding locatiod” on eitherD, or D1 by (7),

as shown at the bottom of the page, wh&fecan be either,

or P11 and@’ can be eitheQ; or Q,.; and P andQ are

P, andQ; in (1). Therefore, (7) indicates the transformation o

a given scan-line is a linear function. On this basis, we morphIn the following, we will propose an approach to compute cor-

two ending points for each scan-line using only (1)—(3) and liiesponding line segments for a given contour pa, (Cs1).

early interpolate the remaining points rather than compute thbis approach consists of three main tasks: 1) finding the prin-

remaining points using (1)—(3). The warping computation cagiple axis of each contour, 2) simplifying the input contours and

thus, be reduced. With this optimization, we approximate the i) contour matching. These three tasks will be presented in the

fluence of a line pair, saf; on a given scan-line, and term eacHollowing sections.

transformed linél’;. We then use (4) to combine dljs and ac- o ) )

complish warping this scan-line. This combination using (4) f&: Principle Axis Alignment

not a linear function and, thus, a straight line could be distortedGiven two input contours, we need to align their principle

into a curve. axes before we find their corresponding line segments. A two-
2) Bounding Box:The computation cost for the originaldimensional (2-D) contou®’ consists ofs points and any two

warping technique is in proportion to the number of featuronsecutive pointg; andp;, of thesen points can form a line

lines and image resolution. We can reduce the computation cesgment. The coordinate of is denoted a$p;.z, p;.y). The

by skipping some empty pixels in our application. For each coprinciple axis of a contou€' can be computed from ifs, co-

tour pair Cs, Cs+1), we find the union of their bounding boxesvariance matrix [20], wher® is defined by (8), as shown at the

and need only to perform the same interpolation procedutasttom of the page. In (8)yn.z, m.y) represents the average

described in Section II-A to this union area, as shown in Fig. &f n points. We then compute the maximum eigenvalue X

Only a distance transform is performed on this area. Later [20]. The corresponding eigenvector bidefines the principle

Section 1V, we will show how this bounding box techniquexis of the contou€’. We compute the principle axes for the two

combined with scan-line optimization (in Section 1I-B1) will
significantly improve the warping computation.

gll. A UTOMATICALLY COMPUTING CONTROL LINE SEGMENTS

O =P bue(Q — P+ v o Perpendicular(Q’ — P’)

Q" — P
A—s+x*A+sxB— P+ P — P)Perpendicula - P
:PI+PI_P/+( S S ||Q_P||2) rpn 1cu r(Q ).(QI_PI)
(A—s*A-l—s*B—l—P—F]‘—i(-?FL)Iojl‘Terpendicular(Q—P) ° Perpendicular(Q' _ P/)
+
Q" — Pl
=A —sxA'+sxB' =(1-5)x A+ B (7)

S {ir —ma)piar — man)} Y (i = m)(piy — )

T = - N (8)
S ey - ma) iz —ma)h S iy = ma) iy — may)}

i=1 i=1
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wheres? ando?,; are the variances in intensity value for two
mn blocks centered opt, andp?_, ,, respectivelyo? ando?
are computed using

ot =3 {1l 3) —m) [ (mn)
@ © Q) et
fork =sors+ 1. (12

Fig.3. Contour simplification. (a) Input contour consists of 999 points. (b)—(d)
Simplified contours of (a) consisting of 250, 60, and 12 points, respectively. And o2
S

using

.41 Is covariance of, and/,, and can be computed

input contours's andC;1) and their axes are denot&dand n m
Vis41, respectively. The included anglebetweenV; andV; 1 03,s+1 = Z Z [{I,(i, §) — s}

is then determined. Using this included an@leve then rotate =1 im

eachp; of C, to achieve alignment using ALoi1(iy §) = pss1}]/ (mn).  (13)
pi = R(0) * p; (9) For a continuous parametric cur¢gz), we can compute its
unit tangent vectof'(x) using the following:
where R(6) is the rotation matrix. dC(x) ,
T(J) — dx — C (11") (14)
1C" ()]

H dC(z)

dz

B. Contour Simplification

In our approach, line segments are used to control the shape-ihis paper, the geometric similarity o (pi) and

based interpolatiqn. Ideally, we will not use too many line seg;ertl (Pg+1) is evaluated using the inner product&fp’ ) and
ments and these line segments should be feature line segments o (v

the given contours. For this purpose, we implemented a method " Pi1). ThiS inner product is denoted using

for the optimal polygonal approximation of digitized curves (T (pl), Ts+1(p§+1)>~ (15)

[21]. This method uses Aheuristic search algorithm to speed

up finding the optimal solution. For a giverpoint contour, its The basic idea is that when two curves are matched, each

complexity is close ta)(n?2). In [21], the error functiorerror ~ correspondence paip;, pl,,) has an equal tangent vector

(i) is used to estimate the local approximation and is equae., inner product is equal to 1). Therefore, when we find

to the square Euclidean distance from contour each point frédh of the equal tangent vectors between two curves, the best

(zi, yi) to (x;, y;) to its orthogonal projection onto the linematch occurs when the sum of (15) for all correspondences

y = ax + b defined by(z;, y;) and(z;, y;) using is the maximum. After the contour simplification discussed
in Section 11I-B, let us assume that bof(u) and Cs41(v)

t=j consists ofm points and each point is denoted@s(p’) and

- —p)? :
error(i, j) = Z (yr agiptl ) (10) C.y1(pl,y), wherel < i, j < m. To find the best matched
t=i points betweer®(u) andCs41(v), we optimally compute the

_ _ . solution using the following:
where P, is a point from(z;, y;) to (z;, y;). Fig. 3 shows an

example using this method (for more details, see [21]. After i { (T, T ( j(i))
simplification, only the feature points of a given contour are |eﬁ§-1<?§‘ b < s\Pa)s Lo+l {Potl >

In the next subsection, we will describe a matching method to ;i)
determine the correspondence among these feature points. Fws « C (P;: Ps+1)} - (16)

i=

To evaluate (16), we need to reparameterize [2211(p§+1)
usinngH(pi(j)l) to find solutionsw; andw- are the weights

Let Cs(u), u € [0, 1] andCs41(v), andv € [0, 1] be tWo  for the intensity and geometry similarities. In addition, the repa-
parametric curves for the source and input contours. In thigmeterization must be subject 01) = 1, j(m) = m and
section, we need to establish the correspondence between;{he < ;(; 1 1). Directly solving (16) is a hard problem. We
two curves. To establish correspondence, two matching Criteéj&opted Coheat al.[23] approach by exploiting dynamic pro-
are considered: intensity and geometry similarities. We use t@reamming over then points of Cy(u) and Cy41(v). This dy-

image correlation to evaluate the intensity similarity. ASSUmMe;mic programming approach recursively defines a cost func-
that two contours are originally extracted from two given gray;gp, Cost(i, j) using
?

level (or binary level for artificial data) image slicésand/, ;.

C. Contour Matching

For two contour pointg’, andp’_ , onI, and/, 1, theirimage Cost(i, 7) = min(Cost(i — 1, j — 1),
correlation can be computed using Cost(i — 1, j), Cost(i, j — 1))
UE,S_H +wy * <T*(p,Ls>7 Ts+l(p.je+1>>

O, plyy) = o™ 11 L
(Ps P.s+1) (o§o§+1)1/2 (11) +w2*C(P;:P.J<+1)- 17)
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where0 < t < 1, D/(X), D, ,(X) are defined in (5)¢ and

R() are defined in (9). Fig. 5(e) shows an interpolated map

using (18). We used an example in Fig. 6 to demonstrate the

difference using (5) and (18). In (5)is andC;; are shown in

(a) and (b). The matched points between the two contours are

illustrated in Fig. 5(c). Fig. 5(d) and (e) represents the rendered

results of the interpolated volume using (5) and (18). From this
(@) (b) (© example, we can observe that Fig. 5(e) has a smoother interpo-

Fig. 4. Contour matching. (a) and (b) Input contours hnand Iy, lated volume than Fig. 5(d).

respectively. Each corresponding point pair is shown using a line connecting

two corresponding points on two contours in (c). IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Experiments were performed using artificial and real-world
data. The artificially generated data were selected from pre-
vious work or selected to present the features of the proposed
algorithm? In the following examples, all corresponding point
pairs are shown using lines connecting the corresponding points
among the contours. The first example was presented in Sec-
tion 11I-D as shown in Fig. 6. This example demonstrates the ca-
pability of the proposed method to interpolate slices of a rotating
stick-like object. Fig. 7 shows that the shape of the stick-like
object is preserved and the object in the first original frame is
rotated to the orientation of the second original frame. The al-
gorithm was next applied on slices that contain two circles [11],
[12], [17]in Fig. 8. In this example, the shape of the large circle
on the first original frame is preserved and the circle is translated
and shrunk in size toward the small circle in the second orig-
inal frame. This experiment shows the ability of this algorithm
The meaning o€ost(i, j) is interpreted as the optimal cost forto interpolate slices contained in objects with large offsets and
matching the first samples ofC;(u) with the first j samples that differ in size. From these two examples, the proposed fea-
of Cy11(v). The time complexity ofost (4, j) is O(ij) using ture-guided shape-based method can manage translation, rota-
the dynamic programming approach [23]. Fig. 4 shows an eti®n and scaling situations, when the slices have similar shapes.
ample of matching two curves using the proposed method. InThe next two examples were hole and branching problems
this example, each corresponding point pair is shown usinglown in Figs. 9 and 10. In Fig. 9, the original frames are (a)
line connecting two corresponding points. After the matchirand (b). Both (a) and (b) have a hole. This example demonstrates
task, these matched points will define corresponding points libe capability of the proposed method to interpolate object slices
tween the two contours and two consecutive feature-points framith holes. In this example two contour pairs are created: a pos-
a feature line-segment on each contour. In all examples in titige pair for the outer contours and a negative pair for the inner
paper, when computing (17), we lef = 0.7 andw, = 0.3 for hole-contours. We then used the proposed method to generate
the real data and; = 0.9 andw, = 0.1 for the artificial data. two interpolated contours: one for a positive pair and one for a

negative pair. The two contours were then blended to generate
D. Solving Interpolation Problems a desired contour. To deal with a hole, the blending is simply

We show an example in Fig. 5 using the proposed algorith{F\nset subtraction operation [13]. For multiple negative and pos-

to control shape-based interpolation. In this example, we ne'g}fle pairs, we separately interpolate the positive and negative

to create distance map, [Fig. 5(a)] andD.. [Fig. 5(b)] object pairs. Afterwards, we blend all of the same type interpo-

for two input contoursC kandC 10N imade slices. and lated contours (positive or negative). In this case, the blending is

I..1. We used feature Iikne—segr:nents computed from the alg%r_‘nply a set union operation. We then subtract the union of neg-

fithms presented in Section I1I-C to generate two warping di tive contours from the union of positive contours to produce the

tance mapY’, [Fig. 5(c)] andD’_. , [Fig. 5(d)]. Next, we used inal interpolated contour. More details about this blending can
s . s+1 . . ’

(5) to linearly interpolate any number of intermediate distan&e fou_n_d in our previous work [13]. Fig. 10 demons_trates _the
maps. This simple approach performs well as the orientation ﬁﬁ‘pab'“ty of the proposed method 1o interpolate object slices
the principle axes of’s andC;_; are not too different. This ap- W'th. branches [7], .[8]’ [11.]_[13]' In [13], we scoreq eaph po-

proach would not otherwise be able to generate a smooth inttéamIal matched object pair based on the overlapping informa-

polation (see an example in Fig. 6). To avoid this situation, v?@n and distance between 'them.. If the Score was over a se-
replaced (5) with ected threshold, the potential pair was considered a matched

pair. We generated interpolated contours for all matched pairs.

Blending

Fig. 5. Warping procedures to interpolate contours.

Di(X)=[D.(X 1-— D’
t( ) [ S( ) * R(H) ¥ ( t) + "H(X) * t] IMore experiments can be found at our research web site: http://couger.csie.
*R(—0(1—1t)) (18) ncku.edu.tw/~vr/TMI_interpolation.html.
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@ (b) © (d) (e)

Fig. 6. Difference using (5) and (18) is shown. (a) and (b) Original cont6urandC; ;, respectively. (c) Matched points between the two contours. (d) and
(e) Interpolated volume rendering results using (5) and (18), respectively.

-y g 4!

() (b) (©) (d) (e)

Fig. 7. Interpolated slices for the example in Fig. 6.

(2) (b)

Fig. 8. Objects with large offsets [11], [12], [17]. (a) and (b) Two input contours. (¢) Matched points. (d) Interpolated volume rendering JeSetiae(ee of
interpolated slices.

)

) ©) ()
(e)

Fig. 9. Objects with a hole [11]. (a) and (b) Original frames. (c).(left) positive pair and (right) negative pair. (d) Rendered result of interplolatednd
(e) shows a sequence of interpolated object.

Fig. 10 shows the independent interpolation of three positigevery computationally intensive method to distort one contour
object pairs. The final contour can then be reconstructed frdmbe like another one. Using the simpler proposed scheme, we
the union of these three interpolated contours. This example vea® the shapes of the intermediate contour change smoothly re-
widely tested in [7], [8], [11]-[13]. The proposed scheme yieldgardless of being a “moderate” or “extreme” concave case. Our
very satisfactory results. results are similar to those presented in [7].

Figs. 11 and 12 are termed “moderate” and “extreme” con- The last two artificial examples were evaluated in [12] as
cave cases in [7]. The proposed method has the capabilitystiown in Figs. 13 and 14. Swet al. [12] mentioned that both
deal well with these two cases. Both examples were also testedes were difficult and were not solved well using the morpho-
in [7]. To deal with these examples, this approach [7] employsgical-based interpolation method [11]. Many previous studies
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el d

(d)

©)

Fig. 10. Branching case [7], [8], [11]-[13]. (a) and (b) Original slices. (c) Matched object pairs. (d) Rendered result of interpolated volumeeijek ¢
interpolation.
[a) i;;

Fig.11. A“moderate” concave case [7]. (a) and (b) Original slices. (c) Correspondence. (d) Rendered result of interpolated volume. (e) Setprpotagiofi.

(e)

Fig. 12. An “extreme” concave case [7]. (a) and (b) Original slices. (c) Correspondence. (d) Interpolated volume rendering result. (e) Intsegaletice.

suggested applying object centralization to have one objetmplexity. Our proposed scheme is more practical than this
enclosed by another before interpolation [17]-[19]. ®ural. approach. Four examples using the proposed method applied to
pointed out that this conventional centralization (i.e., aligningal-world medical data follows in Figs. 15-18.

the centroids of the two objects) sometimes failed when theAll of the above experiments were run on the 1-GHz Intel
objects were concave. To solve this issue, 8ual. [12] iter- Pentium 1l with 128-MB memory. All original slices were
atively employed object centralization and object enlargeme2ii6 « 256 images. We interpolated 100 slices for Figs. 7-14.
to ensure that object enclosure could occur. After interpolatidfor Figs. 15-17, we interpolated eight slices. Table | shows
this approach requires contour shrinking using erosion tiee timing information used in the proposed method and the
compensate for the object enlargement effect. Furthermore, thisnber of feature line segments for interpolating eight slices
process cannot always guarantee object enclosure even winefigs. 15-17. The information includes the time used in
the enlarging factor becomes extremely large [12]. This entimage preprocessing (i.e., contour extraction, object matching,
process is not very efficient with respect to the computationlabunding boxes, computing the principle axes and distance
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(e)

Fig. 13. A difficult case tested in [12]. (a) and (b) Original slices. (c) Correspondence. (d) Interpolated volume rendering results. (e) Seéqtezpoation.

£

Fig. 14. The invagination case (abrupt change in shape) [12]. (a) and (b) Original slices. (c) Correspondence. (d) Interpolated volume renering res

(e) Sequence of interpolation.

Fig. 15. Colon CT image slices. (a) and (b) Original slices and colon contours are extracted in (c) and (d). (e) Correspondence. (f) Sequenietiofiinterpo

transform etc.), contour simplification, contour matching anléhearity) and 1.097 s (using scan-line linearity with bounding
interpolation with warping. From this table, we can see thabxes). From these tables, we see that the interpolation cost is
most of the components of the proposed algorithm computeproportion to the number of line segments. The empty area is
very fast. Only the interpolation component is not fast. Thalso an important factor. As we discussed in Section II-B2, we
average time per interpolated slice was 4.16 s, achieved usaag save computation time, if we skip pixels outside the union
the nonoptimized proposed method for all experiments in thi§ the bounding boxes. The more pixels we skip, the greater the
paper. Tables Il and Ill show the improvement in warpingotential improvement achieved.

computation using the scan-line linearity and bounding boxes.Finally, we applied the proposed method to real 3-D molar
From these two tables, we clearly see the improvement usidagta. The original slices of the molar volume were scanned
the proposed optimized schemes. The average time per interffpom [17]. Fig. 18(a) shows 16 slices from the original 30
lated slice is reduced from about 4.16 s to 2.99 (using scan-lisieces. Fig. 18(b) shows two views of the reconstructed results.
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@ ) © (d @©
®

Fig. 16. CT pelvis image slices: (a) and (b) are original slices; (c) and (d) are extracted contours with interest; (e) shows correspondencé aetiv@gn (c

LT
i

Fig. 17. MRI image slices. (a) and (b) Original slices. (c) and (d) Extracted contours with interest. (e) Correspondence between (c) and (@lafipmter

sequence.
(@)

(b)

Fig. 18. Molar volume reconstruction (256256 x 240). Original input images were scanned from [17].

Table IV shows the experimental timing information for V. CONCLUSION

reconstructing Fig. 18. Since we hgve 30 original slices, we e proposed using features to control shape-based inter-

(H?)Iation. The proposed scheme was experimentally shown

el%‘ successfully resolve complex interpolation problems that
could not be managed using the original shape-based method
or other previous approaches. We applied the proposed scheme
to real-world data. All of the experimental results showed that
the proposed method could generate satisfactory interpolation.

2Available: http://couger.csie.ncku.edu.tw/~vr/TMI_interpolation.html If feature-lines are specified manually, there is no guarantee of

and matching 30 times. A total of 240 slices were interpolat
We also reconstructed other 3-D data.
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TABLE IV
EXPERIMENTAL TIMINGS (UNIT: SECONDY FOR FIG. 18
Molar Image Contour | Contour Interpolation (240 slices)

256%236*240| Preprocessing |Simplification|Matching (1) 2 | &(©)

(30 times) (30 times) (30 times) |Non-optimized | Scan-line

linearity
Fig. 18 4.451 s 3.622 s 4413 g 788.2 ¢ 568.9s |387.7 ¢

TABLE |

TIME (UNIT: SECONDS ANALYSIS FOR EXPERIMENTS IN FIGS. 15-17.
FOR FIG. 17, 12—-16 MEANS THAT THERE ARE TwWO CONTOUR PAIRS
AND ONE PAIR USED 12 LINE SEGMENTS AND THE OTHER USED
16 LINE SEGMENTS TOCONTROL INTERPOLATION

Number of Image Contour Contour |Interpolation
line segments|Preprocessing| Simplification | Matching | with warping
Fig. 15 12-12 0.163 0.070 0.045 34.259
Fig. 16 18-18 0.134 0.170 0.102 50.433
Fig. 17 12-16 0.144 0.221 0.072 38.896
TABLE 1l

PERFORMANCE COMPARISON (UNIT: SECONDY AMONG THE NON-OPTIMIZED,
OPTIMIZED BY SCAN-LINE LINEARITY AND OPTIMIZED USING A COMBINATION
OF SCAN-LINE LINEARITY AND BOUNDING BOXES. IN THESE EXAMPLES:
FIGS. 15-18, WE INTERPOLATED EIGHT SLICES

Non-optimized | Optimized | Optimized & | No. of
Bounding Box | features
Fig, 15 34.537 24321 1.502 12-12
Fig 16 50.839 34.471 3.391 18-18
Fig 17 39.333 28.989 3.512 12-16
TABLE I

PERFORMANCE COMPARISON (UNIT: SECONDY AMONG THE NON-OPTIMIZED,
OPTIMIZED USING SCAN-LINE LINEARITY AND OPTIMIZED USING A
COMBINATION OF SCAN-LINE LINEARITY AND BOUNDING BOXES.

IN THESE EXAMPLES (FIGS. 7-14), WE INTERPOLATED 100 S.ICES

Non-optimized | Scan-line | Scan-line linearity | Number of
linearity & bounding box | feature lines [3]

Fig. 7 74.612 54.422 22.046 4
Fig. 8 208.411 150.420 95.730 12 (4]
Fig. 9 416.023 299.324 192.743 12-12
Fig. 10 625.442 473.916 207.528 12-12-12
Fig 11 378.198 279.736 165.217 22 [5]
Fig. 12 378.641 271.183 164.548 22
Fig. 13 276.498 202.954 158.561 16 6]
Fig. 14 208.179 156.121 124.975 12

times. The proposed method has demonstrated practicality,
effectiveness, reproducibility and accuracy in medical image
interpolation. Finally, we should also mention that the prior
techniques for shape-based interpolation are effective in the
large majority of circumstances in our experience. Further-
more, it is very difficult to state rigorously that our method
produces theoretically correct interpolated shape information,
since the input data are subsampled. However, in contrast to
other work, the proposed method generally and successfully
interpolates data that were reported in other previous work.
On the other hand, with improving imaging scanners, the
interpolation problem is becoming less necessary for 2-D/3-D
data. However, it will be another research direction to apply the
proposed method to four-dimensional (4-D) (plus time) data.
It is not common to have a very high resolution of 4-D data at
most hospitals.
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